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Abstract. We study the phase diagram of a neural network model which has learnt with 
the ADALINE algorithm, starting from tabula non rasa conditions. The resulting synaptic 
efficacies are not symmetric under an exchange of the pre- and post-synaptic neuron. In 
contrast to several other models which have been discussed in the literature, we find a 
spin-glass phase in the asymmetrically coupled network. The main difference compared 
with the other models consists of long-ranged Gaussian correlations in the ensemble of 
couplings. 

The dynamics of spin-glass-like systems with asymmetric couplings between the spins 
has been discussed recently in a number of publications [l-51. Models of this type 
are of special interest in the field of neural networks where the couplings Jg correspond 
to synaptic efficacies, which describe the influence of the presynaptic neuron j on the 
postsynaptic neuron i. In physiological networks [6] Jg # Ji, whereas in the standard 
Hopfield model [7] (for a review, see [SI) the assumption of special learning rules 
(e.g. Hebb’s rule) leads to Jg = Ji. Meanwhile, however, other learning rules have been 
proposed [9, lo], which give rise to asymmetric couplings. 

A characteristic feature of networks with symmetric .Ij is the appearance of a 
spin-glass phase [7] with frozen-in magnetic moments, which are not at all or only 
weakly correlated with any of the learnt patterns. Up to now all the work [ 1-51, which 
attempted to introduce asymmetric couplings, arrived at the conclusion that the spin- 
glass phase is destroyed by a small amount of asymmetry in the J g .  

In the following we give an example of a neural network with asymmetric couplings 
(arising from a learning rule proposed in [9]) which does show a spin-glass phase. 
The important difference compared with the other models which have been considered 
so far is the presence of long-ranged Gaussian correlations in the ensemble of couplings 
J,, as will be discussed below. 

The couplings are defined by a learning rule of the ‘tabula non rasa’ type [9]. The 
network consists of N neurons and has to learn p patterns ( 5 ;  = *l}, v = 1 , .  . . , p and 
i = 1, . . . , N. The initial values for the synaptic efficacies, J,( t = 0) = B,, are taken to 
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be random and symmetric, i.e. B, = B,l. Learnhg proceeds with the ADALINE algorithm 
[l l ,  12]$, sa that the resulting N x N matrix J is given by 

Here @ denotes the projector onto the subspace of patterns (5:). The distribution of 
B, is taken to be Gaussian with zero mean and variance ( B i )  = BZ/ N. Though the B, 
are symmetric and uncorrelated, these properties are not shared by the J,. 

The dynamic evolution of our network is defined by a set of Langevin equations 
for soft spins s, (graded neurons): 

.f = J o e  + ( i - @) . (1)  

The noise q i ( t )  is a Gaussian variable with zero mean and variance ( ~ ~ ( f ) ~ ~ ( f ’ ) ) =  
( 2 T / r O ) S i j S ( t -  f ’ ) .  The microscopic timescale is set by ri1, denotes an external 
field and fu(si) restricts fluctuations around Jsil = 1. It is chosen such that for large U 
the fluctuations in spin length are more and more suppressed and for U + CO the Ising 
limit is reached ( s i  = f 1) .  We note that the soft-spin formulation is not essential. 
Equivalent results can be achieved for a single spin-flip Glauber dynamics. 

We shall only consider the case of a finite number p of patterns, which are taken 
as independent random variables with zero magnetisation 

For the purpose of illustration we consider the case of one learnt pattern l i ,  such that 
Pij = (1/  N ) l i l j .  The generalisation to a finite number of patterns will be discussed at 
the end. For the one-pattern model the explicit dependence on the pattern f;. can be 
gauged away by the transformation 

si + lis, 

Jij + 5i J i j l j  
(3) 

which leaves (2) invariant, iffu(si) is odd in si .  Note that the and giBijlj have the 
same distribution as 7 ) i  and B,, respectively. The transformed Jij take on the simple form 

We want to elucidate the effects of asymmetric couplings and generalise the model 
of (4): 

such that the degree of asymmetry A can be varied. Note that A = 1 corresponds to 
the original suggestion of [9] whereas A = 0 corresponds to a fully symmetrised model. 

Using standard techniques [13] it is possible to reduce the N coupled equations 
of motion to a non-Markovian single-spin dynamics. This has to be solved self- 
consistently for the overlap 

t The convergence for arbitrary initial conditions have been proved by L Personnaz (private communication). 
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for the autocorrelation 

and for the response function 

We are interested here in a stationary state, which is characterised by m ( t )  = m, 
C(t, t ' )=  C ( t - t ' )  and G(t, t ' ) =  G ( t - t ' ) .  In this case the equation of motion 
simplifies to 

- (iw/ro)s(w) = B 2 G ( w ) s ( o )  + {Jo-  B2[  1 -a(l- A 2 ) ] G ( w  = O)}mS(w)  

+ y ( w ) + f , ( s ;  U ) +  h e x t ( w )  (7) 
where f,(s; w )  is the Fourier transform of fu(s(t)) and the noise y ( w )  is Gaussian 
distributed with zero mean ( y ) ,  = 0 and variance 

( Y ( w ) Y ( w ' ) ) ,  = S ( U + ~ ' ) ( ~ T / ~ , + B ~ ( C ( U ) - [ ~  -$(I  - A ) ' ] m 2 S ( w ) } ) .  

a(s( t)),/ah""'( f ' ) .  

(8) 
The self-consistency conditions are: m = ( ~ ( t ) ) , ,  C ( t  - t ' )  = ( s ( t ) s ( t ' ) ) ,  and G(t  - t ' )  = 

A self-consistent solution of equations (7) and (8) is m = 0. The equation of motion 
is then identical to the Sherrington-Kirkpatrick model with relaxational dynamics-no 
matter how strong the asymmetry A. Hence we expect a transition from a paramagnetic 
to a spin-glass phase for small Jo/ B. To discuss the general case we split the correlation 
function into a time-persistent part q = lim,+m C( t )  and a decaying part e( t )  = C( t )  - q. 
I fq  #Oand/orm #O,thenoiseacquiresastaticparty(w) = F ( w ) + z S ( w )  withvariances 

A, = ( z 2 ) ,  = B 2 [ q  - m 2 +  m2a(l - A ) 2 ]  (9a) 

The equation of motion is then 

-( iy/r0)s(w) = B 2 G ( w ) s ( w ) + H ( z ) G ( w ) + F ( o ) + f , ( s ;  U ) .  (10) 
The spin relaxes in a static field 

H ( z )  = z +Jom - B2[  1 - a ( l -  A*)]G(O)m 

which has a systematic part -m and a fluctuating component z. The modification of 
the bare propagator is just like in the Gaussian spin glass and so is the dynamic noise, 
which is generated by the random couplings E,.  In the high-temperature phase (H = 0) 
equations (9) and (10)  are consistent with a fluctuation dissipation theorem, which 
relates correlation (and response) function: p e ( w )  = ( 2 / w )  Im G ( w ) .  This can be 
shown perturbatively in an expansion in the non-linearity of f,(s; w ) .  A non-zero 
static field H # O  gives rise to a non-zero m and q so that the expansion of the 
non-linearity has to be done around a non-zero (s). This does not invalidate the FDT, 

so that the stationary probability distribution can be constructed for all values of A. 
The expectation values of q and m are given in the Ising limit by 

m = Dz tanh p H ( z )  = K ( q ,  m )  (1la)  
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and 

q = Dz tanh2 PH(z)  = F ( q ,  m )  

with 1;: Dz =I exp(-z2/2A,) d z / ( 2 ~ A = ) l ' ~ .  
The paramagnetic phase becomes unstable to ferromagnetic ordering if a K ( q  = 0, 

m = O)/am = 1,  i.e. for Jo - ( B2/ TFM)[  1 -$( 1 - A 2 ) ]  = T F M .  The paramagnetic phase is 
unstable to spin-glass fluctuations if a F ( q  = 0, m = O) /aq  = 1, i.e. TSG = B. 'These lines 
determine the phase boundaries of the paramagnetic phase. The transition line from 
spin glass to ferromagnet is given by 

dK(q,  m = O )  
am 

= 1 = { J h  - pB2( 1 - q ) [  1 -$( 1 - A')]}@( 1 - 4). 

Analytic results can be obtained near themulticritical point and in the limit of low 
temperature. We find that at Jh/ B = J T / ~  + 421 T [  1 - $( 1 - A ')I the ferromagnet and 
the spin glass exchange their local stability for T = 0. The magnetisation vanishes at 
this point so that there is a second-order spin glass to ferromagnetic transition. The 
phase diagram is shown in figure 1 for A = 1 as a function of Jo/B and T/B. 
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Figure 1. The phase diagram of a neural network model which has learnt with the ADALINE 
algorithm, starting from tabula non rasa conditions, indicating paramagnetic ( PM),  fer- 
romagnetic ( F M )  and spin-glass ( S G )  phases. 

Our results are easily generalised to the case of a finite number of patterns. In 
particular the stationary values of q and m (equation ( 1 1 ) )  are unchanged if one 
restricts oneself to retrieval states. 

The stationary probability distribution can be given for arbitrary A, because the 
asymmetry only enters into the static field H(z) .  It is not clear how the relaxation 
from an arbitrary initial condition proceeds. Starting from a random initial condition, 
i.e. m = 0, in the parameter range of the spin-glass phase will result in a stationary 
state q # 0. An interesting open problem is the relaxation from an initial state m( to) # 0. 
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So far we have only discussed the simplest dynamic mean-field theory, which does 
not show any anomalous response. This solution is dynamically unstable, as expected, 
in all of the spin-glass phase and the ferromagnetic phase below the de Almeida- 
Thouless [14] line (y)2 = I Dz 1 

cosh4PH(z)' 

One of the effects of replica symmetry breaking is an extension of the ferromagnetic 
phase at the expense of the spin-glass phase. According to an argument of Toulouse 
[ 151, we expect the phase boundary between the spin glass and the retrieval phase to 
be vertical. 

We have shown the existence of a spin-glass phase in a neural network with 
asymmetric couplings. To get some further insight we study the distribution of the 
coupling constants. The symmetric part Ji = $(.TI, + A t )  and the antisymmetric part 
J ;  = ;( Jv - A l )  are correlated random variables. Consider, for example, the second 
cumulant of the antisymmetric part 

The short-range correlations, ( (J ; ) ' ) ,  = B2A2/2N2,  are indeed negligible as compared 
to the short-range correlations of the second cumulant of the symmetric part, namely 
( ( J ; ) 2 ) ,  = O( 1/ N ) .  Hence our results do not contradict previous studies of spin-glass- 
like neural networks with short-range correlations only. It is only due to the long-range 
correlations that the dynamics are influenced by JG in the thermodynamic limit. 
Recently Krauth et al [16] conjectured that most of the dynamical effects in neural 
networks are controlled by two parameters: 

/ \ - 1  

to characterise the symmetry of the couplings and 

Ai = min l r J l j g (  7 J f )  
- 1  

to characterise the stability of the patterns. Our model illustrates that their conjecture 
should be supplemented by further parameters to specify the long-range correlations 
of JU. 

One of us (DW) would like to thank M Opper for many helpful discussions. RK 
acknowledges partial support by the SFB 237 of the Deutsche Forschungsgemeinschaft. 
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